Stability and Bifurcation Analysis of Differential–Difference–Algebraic Equations

نویسندگان

  • Luonan Chen
  • Kazuyuki Aihara
چکیده

This paper treats a nonlinear dynamical system with both continuous-time and discrete-time variables as a differential–difference–algebraic equation (DDA) or a hybrid dynamical system, presents a fundamental analyzing method of such a DDA system for local sampling, asymptotical stability, singular perturbations and bifurcations, and further shows that there exist four types of generic codimension-one bifurcations at the equilibria in contrast to two types in continuous-time dynamical systems and three types in discrete-time dynamical systems. Finally the theoretical results are applied to digital control of power systems as an example. Numerical simulations demonstrate that our results are useful.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions of Differential Algebraic Equations with Time Delays: Computation and Stability Analysis

This paper concerns the computation and local stability analysis of periodic solutions to semi-explicit differential algebraic equations with time delays (delay DAEs) of index 1 and index 2. By presenting different formulations of delay DAEs, we motivate our choice of a direct treatment of these equations. Periodic solutions are computed by solving a periodic two-point boundary value problem, w...

متن کامل

Hopf bifurcation and stability for a differential-algebraic biological economic system

In this paper, we analyze the stability and Hopf bifurcation of the biological economic system based on the new normal form and the Hopf bifurcation theorem. The basic model we consider is owed to a ratio-dependent predator–prey system with harvesting, compared with other researches on dynamics of predator–prey population, this system is described by differential-algebraic equations due to econ...

متن کامل

Center manifold analysis and Hopf bifurcation of within-host virus model

A mathematical model of a within-host viral infection is presented. A local stability analysis of the model is conducted in two ways. At first, the basic reproduction number of the system is calculated. It is shown that when the reproduction number falls below unity, the disease free equilibrium (DFE) is globally asymptotically stable, and when it exceeds unity, the DFE is unstable and there ex...

متن کامل

BIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF

‎In this paper‎, ‎first we discuss a local stability analysis of model was introduced by P‎. ‎J‎. ‎Mumby et‎. ‎al‎. ‎(2007)‎, ‎with $frac{gM^{2}}{M+T}$ as the functional response term‎. ‎We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef‎. ‎Next‎, ‎we consider this model under the influence of the time delay as the bifurcat...

متن کامل

Local Stability Analysis for a Delayed Differential-algebraic Biological Economic System with Ratio-dependent Functional Response

Abstract: This paper is concerned with a delayed differential-algebraic biological economic system. Firstly, the differential-algebraic system is transformed into a differential system by employing the local parameterization method of differential-algebraic system, and then the sufficient conditions for the local stability and the existence of Hopf bifurcation are established by regarding the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001